Abstract

A class of optimal shape design problems is studied in this paper. The boundary shape of a domain is determined such that the solution of the underlying partial differential equation matches, as well as possible, a given desired state. In the original optimal shape design problem, the variable domain is parameterized by a class of functions in such a way that the optimal design problem is changed to an optimal control problem on a fixed domain. Then, the resulting distributed control problem is embedded in a measure theoretical form, in fact, an infinite-dimensional linear programming problem. The optimal measure representing the optimal shape is approximated by a solution of a finite-dimensional linear programming problem. The method is evaluated via a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.