Abstract

We consider a machine learning approach to perform best beam prediction in Non-Standalone Millimeter Wave (mmWave) Systems utilizing Channel Charting (CC). The approach reduces communication overheads and delays associated with initial access and beam tracking in 5G New Radio (NR) systems. The network has a mmWave and a sub-6 GHz component. We devise a Base Station (BS) centric approach for best mmWave beam prediction, based on Channel State Information (CSI) measured at the sub-6 GHz BS, with no need to exchange information with UEs. In a training phase, we collect CSI at the sub-6 GHz BS from sample UEs, and construct a dimensional reduction of the sample CSI, called a CC. We annotate the CC with best beam information measured at a mmWave BS for the sample UEs, assuming autonomous beamformer at the UE side. A beam predictor is trained based on this information, connecting any sub-6 GHz CSI with a predicted best mmWave beam. To evaluate the efficiency of the proposed framework, we perform simulations for a street segment with synthetic spatially consistent CSI. With a neural network predictor, we obtain 91% accuracy for predicting best beam and 99% accuracy for predicting one of two best beams. The accuracy of CC based beam prediction is indistinguishable from true location based beam prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.