Abstract
We introduce heat semigroup-based Besov classes in the general framework of Dirichlet spaces. General properties of those classes are studied and quantitative regularization estimates for the heat semigroup in this scale of spaces are obtained. As a highlight of the paper, we obtain a far reaching Lp-analogue, p≥1, of the Sobolev inequality that was proved for p=2 by N. Varopoulos under the assumption of ultracontractivity for the heat semigroup. The case p=1 is of special interest since it yields isoperimetric type inequalities.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have