Abstract

Hearing impairment following cochlear damage due to noise trauma, ototoxicity caused by aminoglycoside antibiotics, or age-related cochlear degeneration was linked to a common pathogenesis involving the formation of reactive oxygen species (ROS). Cochleae are more vulnerable to oxidative stress than other organs because of the high metabolic demands of their mechanosensory hair cells in response to sound stimulation. We recently showed that patients and mice with Huntington's disease (HD) have hearing impairment and that the dysregulated phosphocreatine (PCr)-creatine kinase (CK) system may account for this auditory dysfunction. Given the importance of noninvasive biomarkers and the easy access of hearing tests, the symptom of hearing loss in HD patients may serve as a useful clinical indicator of disease onset and progression of HD. We also showed that dietary creatine supplementation rescued the impaired PCr-CK system and improved the expression of cochlear brain-type creatine kinase (CKB) in HD mice, thereby restoring their hearing. Because creatine is an antioxidant, we postulated that creatine might enhance expression of CKB by reducing oxidative stress. In addition to HD-related hearing impairment, inferior CKB expression and/or an impaired PCr-CK system may also play an important role in other hearing impairments caused by elevated levels of ROS. Most importantly, dietary supplements may be beneficial to patients with these hearing deficiencies.

Highlights

  • Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder with onset usually in middle age

  • Because the hearing system involves high-energy-demanding metabolic processes, CKB is likely to play an important role in maintaining normal hearing, as well as in pathological hearing impairments caused by energy deficiencies in the cochlea

  • We suggest that hearing loss may serve as a biomarker to monitor the progression of HD and discuss the potential roles of CKB and the phosphocreatine (PCr)-creatine kinase (CK) system in neurodegenerative disorders associated with energy deficits

Read more

Summary

Introduction

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder with onset usually in middle age. Our findings indicate that the impairment of CKB may account for the cochlear energy deficiency which is likely a primary cause of the observed hearing loss in HD mice [7]. Because the hearing system involves high-energy-demanding metabolic processes, CKB is likely to play an important role in maintaining normal hearing, as well as in pathological hearing impairments caused by energy deficiencies in the cochlea.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.