Abstract
The concept of Berry phase is included in an analysis of the intensity distribution in far wings of pressure-broadened spectral lines emitted or absorbed by atoms placed in an external cone-rotating electric field. Particular attention is focused on frequency regions where rainbow satellite bands appear. A classical-path treatment that employs the time-dependent Schr\"odinger equation is used to derive an expression for the line shape, and it uses a dipole transition moment calculated with quasimolecular wave functions given by the Berry version of the adiabatic approximation. It is found that in the presence of an external rotating electric field, the intensity distribution in far wings can be expressed in terms of the universal line shape function of the unified Franck-Condon theory once energy shifts due to Stark and Berry effects are taken into account. We show that the influence of Berry phase in the profiles of the far wings can be manifested either in the form of deviations of observed profiles from the quasistatic distribution or the appearance of additional features in the vicinity of the maximum of the rainbow satellite band. As an example, the modification of the rainbow satellite at 162.3 nm in the red wing of the self-broadened Lyman-$\ensuremath{\alpha}$ line of hydrogen, caused by an external rotating electric field, is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.