Abstract

We consider the relation between spin and the Berry-phase contribution to the anomalous velocity of massive and massless Dirac particles. We extend the Berry connection that depends only on the spatial components of the particle momentum to one that depends on the the space and time components in a covariant manner. We show that this covariant Berry connection captures the Thomas-precession part of the Bargmann-Michel-Telegdi spin evolution, and contrast it with the traditional (unitary, but not naturally covariant) Berry connection that describes spin-orbit coupling. We then consider how the covariant connection enters the classical relativistic dynamics of spinning particles due to Mathisson, Papapetrou and Dixon. We discuss the problems that arise with Lorentz covariance in the massless case, and trace them mathematically to a failure of the Wigner-translation part of the massless-particle little group to be an exact gauge symmetry in the presence of interactions, and physically to the fact that the measured position of a massless spinning particle is necessarily observer dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.