Abstract

AbstractIn this work, a general method is described for obtaining degenerate solutions of the Dirac equation, corresponding to an infinite number of electromagnetic 4‐potentials and fields, which are explicitly calculated. More specifically, using four arbitrary real functions, one can automatically construct a spinor that satisfies the Dirac equation for an infinite number of electromagnetic 4‐potentials, defined by those functions. An interesting characteristic of these solutions is that, in the case of Dirac particles with nonzero mass, the degenerate spinors should be localized, both in space and time. The method is also extended to the cases of massless Dirac and Weyl particles, where the localization of the spinors is no longer required. Finally, two experimental methods are proposed for detecting the presence of degenerate states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.