Abstract

We derive the definition of the Berry phase for the adiabatic transport of a composite fermion (CF) in a half-filled composite Fermi-liquid (CFL). It is found to be different from that adopted in previous investigations by Geraedts et al. For the standard CFL wave function, we analytically show that the Berry curvature is uniformly distributed in the momentum space. For the Jain-Kamilla wave function, we numerically show that its Berry curvature has a continuous distribution inside the Fermi sea and vanishes outside. We conclude that the CF with respect to both the microscopic wave-functions is not a massless Dirac particle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.