Abstract

In this paper, we diagonalize the Hamiltonian of the one-dimensional spin chain system with three-body interaction. Then we solve geometric phase of ground state in the system through a rotating operation. By the numerical calculation of the geometric phase and its derivative, we consider the three-body interaction effects on the geometric phase and quantum phase transition, the results show that the geometric phase can be well used to characterize quantum phase transition in this system, and find that three-body interaction not only can move the criticality region, but also can generate a new critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.