Abstract
The deformation behavior of diamondlike carbon (DLC) coatings on silicon substrates induced by Berkovich indentation has been investigated. DLC coatings deposited by a plasma-assisted chemical vapor deposition technique were subjected to nanoindentation with a Berkovich indenter over a range of maximum loads from 100 to 300 mN. Distinct pop-ins were observed for loads greater than 150 mN. However, no pop-out was observed for the loads studied. The top surface of the indents showed annular cracks with associated fragmented material. The cross sections showed up to 20% localized reduction in thickness of the DLC coating beneath the indenter tip. Cracking, {111} slip, stacking faults, and localized phase transformations were observed in the silicon substrate. The discontinuities in the load–displacement curves at low loads are attributed to plastic deformation of the silicon substrate, whereas at higher loads they are attributed to plastic deformation as well as phase transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.