Abstract

Let [Formula: see text] be a compact hyperbolic Riemann surface equipped with the Poincaré metric. For any integer [Formula: see text], we investigate the Bergman kernel associated to the holomorphic Hermitian line bundle [Formula: see text], where [Formula: see text] is the holomorphic cotangent bundle of [Formula: see text]. Our first main result estimates the corresponding Bergman metric on [Formula: see text] in terms of the Poincaré metric. We then consider a certain natural embedding of the symmetric product of [Formula: see text] into a Grassmannian parametrizing subspaces of fixed dimension of the space of all global holomorphic sections of [Formula: see text]. The Fubini–Study metric on the Grassmannian restricts to a Kähler metric on the symmetric product of [Formula: see text]. The volume form for this restricted metric on the symmetric product is estimated in terms of the Bergman kernel of [Formula: see text] and the volume form for the orbifold Kähler form on the symmetric product given by the Poincaré metric on [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.