Abstract

On a polarized manifold $(X,L)$, the Bergman iteration $\phi_k^{(m)}$ is defined as a sequence of Bergman metrics on $L$ with two integer parameters $k, m$. We study the relation between the Kahler-Ricci flow $\phi_t$ at any time $t \geq 0$ and the limiting behavior of metrics $\phi_k^{(m)}$ when $m=m(k)$ and the ratio $m/k$ approaches to $t$ as $k \to \infty$. Mainly, three settings are investigated: the case when $L$ is a general polarization on a Calabi-Yau manifold $X$ and the case when $L=\pm K_X$ is the (anti-) canonical bundle. Recently, Berman showed that the convergence $\phi_k^{(m)} \to \phi_t$ holds in the $C^0$-topology, in particular, the convergence of curvatures holds in terms of currents. In this paper, we extend Berman's result and show that this convergence actually holds in the smooth topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.