Abstract
On a polarized manifold $(X,L)$, the Bergman iteration $\phi_k^{(m)}$ is defined as a sequence of Bergman metrics on $L$ with two integer parameters $k, m$. We study the relation between the Kahler-Ricci flow $\phi_t$ at any time $t \geq 0$ and the limiting behavior of metrics $\phi_k^{(m)}$ when $m=m(k)$ and the ratio $m/k$ approaches to $t$ as $k \to \infty$. Mainly, three settings are investigated: the case when $L$ is a general polarization on a Calabi-Yau manifold $X$ and the case when $L=\pm K_X$ is the (anti-) canonical bundle. Recently, Berman showed that the convergence $\phi_k^{(m)} \to \phi_t$ holds in the $C^0$-topology, in particular, the convergence of curvatures holds in terms of currents. In this paper, we extend Berman's result and show that this convergence actually holds in the smooth topology.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have