Abstract
Bergenin, a plant polyphenol, has been reported to lower the blood glucose level and ameliorate kidney function in streptozotocin (STZ)-induced diabetic rats. Herein, its protective effect on diabetic nephropathy (DN) was explored in view of extracellular matrix (ECM) generation in glomerular mesangial cells. Glomerular mesangial cells were treated with high glucose, and Q-PCR as well as western blot were used to determine the expression of ECM. To establish the participation and role of mammalian target of rapamycin (mTOR) and nuclear factor erythroid-derived 2-related factor 2 (Nrf2) in ECM generation, a combination of l-leucine (activator of mTOR) and Nrf2 shRNA transfection were performed, respectively. Moreover, a DN model was established in mice using high-glucose/high-fat diet and STZ. Bergenin impeded the generation of TGF-β1 and ECM, decreased the levels of intracellular superoxide anion and hydrogen peroxide, and increased the activity of antioxidant enzymes in the glomerular mesangial cells (HBZY-1 and HRMC cells) treated with high glucose. The inhibition of ECM generation by bergenin was dependent on the down-regulation of oxidative stress as confirmed via a superoxide overexpression system. The activation of Nrf2 was required for bergenin to inhibit the oxidative stress and ECM generation. Moreover, bergenin was found to inhibit the phosphorylation of mTOR, which is located at the upstream of Nrf2. Bergenin did not interfere with the expression of Nrf2 mRNA and Keap1 (the classic degradation control factor of Nrf2), but markedly inhibited the protein expression of the β-TrcP, an effect which could be abolished by l-leucine. In DN model mice, l-leucine diminished the ability of bergenin to reduce the levels of superoxide anion, hydrogen peroxide and ECM, which contributed to the eradication of the ameliorative effect of bergenin on nephropathy. Bergenin can inhibit glucose-induced ECM production in glomerular mesangial cells through the down-regulation of oxidative stress via the mTOR/β-TrcP/Nrf2 pathway, and it might be a candidate drug for the prevention and treatment of DN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.