Abstract

In this paper, we propose low precision BER-optimal analog-to-digital converters (ADC) where quantization levels and thresholds are set nonuniformly to minimize the bit-error rate (BER ) in a high data rate communication link. This is in contrast to how ADCs are used today, in which they act as transparent waveform preservers. Simulations for various communication channels show that for 2-PAM modulation, the BER-optimal ADC achieves shaping gains that range from 2.5 dB for channels with low intersymbol interference (ISI) to more than 30 dB for channels with high levels of ISI. Moreover, a 3-bit BER -optimal ADC achieves the same or even lower BER than a 4-bit uniform ADC. With a DFE and a high-ISI channel, a 3-bit BER -optimal ADC achieves lower BER than a 5-bit uniform ADC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.