Abstract
The effect of back-end of line (BEOL) process on cell performance and reliability of Phase-Change Memory embedded in a 28nm FD-SOI platform (ePCM) is discussed. The microscopic evolution of the Ge-rich GST alloy during process is the focus of the first part of the paper. A new metric for quantification of active material modifications is introduced to better follow its evolution with process sequence. Ge clustering has been shown to occur during the fabrication, impacting the pristine resistance and the after forming cell performance. Two different BEOL processes are then benchmarked in terms of key performance. An optimized process is identified, and an extensive electrical characterization of array performance and reliability is done on the full 16MB chip. The optimized BEOL process results in a memory cell fully compatible with the requirements for demanding automotive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.