Abstract

Substituents are widespread in chemistry, but it has remained quite difficult to reliably determine the thermodynamic and kinetic stabilities of substituted compounds, though they are key to helping establish a structural rule and synthetic viability, respectively. As an important class of valence isomers in the benzene family, benzvalene-like structures have been extensively studied in systems associated with electron-neutral (i.e., C, Si, Ge, Pb, and Sn) and electron-rich (e.g., P) skeletons. However, stable benzvalene-like examples associated with electron-deficient skeletons have been very limited, possibly due to the very complicated bonding patterns of electron-deficient elements. Here, we performed an extensive structural search at the density functional theory (DFT) and CBS-QB3 level for the well-known six-vertex dicarboranes (C2B4R6), one of the central families of boranes and carboranes chemistry. We unexpectedly found that all of the previously reported benzvalene-like structures III (C2B4R6) as the long-chased "rule breaker" examples of the Wade-Mingos rule (W-M rule) are not the lowest-lying structures. Promisingly, for the first time, we succeeded in identifying several substituted III as the genuine lowest-lying structures and thus true "rule breakers." Thus, "benzvalenes" present hitherto the fourth member of the lowest-lying structural patterns for the family of six-vertex dicarboranes. Moreover, the presently revealed good kinetic stability of III' (C2B4R2R'4) over a wide range of substituents promoted us to recommend a novel kind of synthesizable carboranes beyond the Wade-Mingos rule, i.e., "benzvalene-like carboranes" with all of the classical skeletal atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.