Abstract

Thirty-eight atom Cu-Au clusters have been studied because this is a magic size for a complete truncated octahedral cluster. The clusters are investigated using two approaches, at different levels of theory, which are complementary. The first is an empirical potential (EP) approach which is used together with a genetic algorithm (GA) to tackle the problems of global optimization-i.e., searching for lowest-lying energy structures. The second is an ab initio approach based on density functional theory (DFT) which is used to reoptimize the initial EP structures (both global minima and other low energy isomers). Structural distributions and energy landscapes, including calculations of electronic energy gaps for all compositions of Cu(38-n)Au(n), are investigated. The energy competition between different structural motifs and different configurations are studied at the DFT level. The analysis of mixing and segregation effects results in confirmation of the preference for Cu(core)-Au(shell) configurations at the DFT level. Charge transfer is calculated for different structural motifs of Cu(19)Au(19) to study the role of this phenomenon in driving cluster configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.