Abstract
This study examines the interaction between benzoylmesaconine (BMA) and hen egg white lysozyme (HEWL) under various physiological conditions, aiming to determine how BMA affects the HEWL's structure and function. Several analytical techniques were used, including tryptophan assay, light scattering, thioflavin T (ThT)-binding assay, dynamic light scattering, 8-anilino-1-naphthalenesulfonic acid (ANS)-binding assay, circular dichroism (CD) spectroscopy, enzyme activity assay, and molecular docking. The tryptophan assay displayed a concentration-dependent decrease in tryptophan fluorescence, showing an interaction between BMA and HEWL. Light scattering and ThT-binding assays confirmed increased protein aggregation and amyloid fibril formation, while the ANS-binding assay demonstrated altered exposed hydrophobic regions, implying structural changes. CD spectroscopy showed a reduction in α-helix content, indicating conformational alterations, and enzyme activity assays showed a loss of lytic function due to structural distortion. Finally, molecular docking identified significant bonds and hydrophobic interactions between BMA and HEWL residues. BMA binding induces structural changes in proteins, forming small oligomers and amyloid fibrils that decrease HEWL enzymatic activity and disrupt functional integrity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have