Abstract

The fluorescence yield of benzo[ a]pyrene (BP) increases dramatically upon its transfer from the surface of particulates to rat liver microsomes. Adsorption of BP to Canadian chrysotile, anthophyllite, hematite and silica results in greatly enhanced uptake rates into microsomes when compared to uptake from a microcrystalline dispersion of BP. The fibrous minerals chrysotile and anthophyllite were more effective than silica and hematite in enhancing BP uptake. Simple mixtures of BP microcrystals and particles did not display enhanced transport, indicating that adsorption of BP to the particulate surface is necessary for enhanced microsomal uptake. BP was not released into microsomes from carbon black. We suggest that particulate-enhanced availability of BP may be of significance in the co-carcinogenesis between particulates and polynuclear aromatic hydrocarbons. However, other mechanisms are also possible, and are not excluded by our experiments. The fluorescence methodology described in this paper provides a novel and convenient means to quantify microsomal uptake of BP and thereby investigate further the mechanisms of cocarcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call