Abstract
In this study, we evaluated (1) the plant uptake of polycyclic aromatic hydrocarbons (PAHs) from soil and water and (2) the applicability of the partition-limited model on the prediction of plant concentrations with respect to PAH contents in soils and other associated parameters. To accomplish these goals, the plant uptake of PAHs from culture solution and soils were extensively experimented. A steady state was shown for ryegrass kinetic uptake of phenanthrene and pyrene from water after about 48 h. As to the ryegrass uptake from soils, root and shoot concentrations of PAHs generally increased, while root concentration factors (RCFs) and shoot concentration factors (SCFs) tended to decrease with the increasing PAH concentrations in soils after 45 days. One note of interest is that root concentrations and RCFs of phenanthrene and pyrene for ryegrass uptake were larger than shoot concentrations and SCFs, irrespective of soil–plant and water–plant systems. However, root and shoot concentrations, or RCFs and SCFs, for ryegrass uptake from culture solution were always much higher than those for ryegrass uptake from soils at the same PAH concentrations in water or soil interstitial water, indicating that PAHs in culture solution would be more available and susceptible than those in soil interstitial water for uptake by plants. In addition, the partition-limited model showed a high level of model performance on prediction of plant uptake of phenanthrene and pyrene from soils, with the overall differences of the modeled and experimented concentrations in ryegrass roots or shoots less than 187%. This suggests that the partition-limited model might be a potentially useful instrument for vegetation-contamination assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.