Abstract

A bench-scale study was designed for removal of Methyl Tertio Butyl Ether (MTBE) and benzene from south of Tehran groundwater. The experiments were implemented on a one-dimensional soil column with similar chemical and physical conditions of the region. Fenton’s chemical oxidation with stabilized nano zero-valent iron particles (S-NZVI) as catalyst was used. For treatment of groundwater polluted with 2 mg L-1 MTBE and 1 mg L-1 benzene, optimum concentrations of H2O2 and S-NZVI were 1500 and 300 mg L-1, respectively. The optimum concentrations led to 78 % elimination of MTBE and 87 % of benzene. Hazardous by-products (acetone and tertio-butyl alcohol) concentrations were less than 0.1 mg L-1, which were considered to be negligible. The soil permeability was reduced to 30 % after removal process. To increase the system efficiency and reduce the consumption of iron, the reaction environment was acidified down to pH = 3.2 led to removal efficiency of 90 % and 96 % for MTBE and benzene, respectively. The scavengers (ions) reduced the system efficiency up to 15 %. This study indicates that theoretically the MTBE and benzene could be removed from groundwater using Fenton’s chemical oxidation with S-NZVI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.