Abstract

AbstractMotivated by time series of atmospheric concentrations of certain pollutants the authors develop bent‐cable regression for autocorrelated errors. Bent‐cable regression extends the popular piecewise linear (broken‐stick) model, allowing for a smooth change region of any non‐negative width. Here the authors consider autoregressive noise added to a bent‐cable mean structure, with unknown regression and time series parameters. They develop asymptotic theory for conditional least‐squares estimation in a triangular array framework, wherein each segment of the bent cable contains an increasing number of observations while the autoregressive order remains constant as the sample size grows. They explore the theory in a simulation study, develop implementation details, apply the methodology to the motivating pollutant dataset, and provide a scientific interpretation of the bent‐cable change point not discussed previously. The Canadian Journal of Statistics 38: 386–407; 2010 © 2010 Statistical Society of Canada

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.