Abstract

Dental biofilm is often found to be the source of bacteria that releases toxins, peptides, lipopolysaccharides as well as organic acids, which lead to gingival inflammation and tooth caries. Further, the persistent plaque may result in the continued destruction of the surrounding soft and hard tissues. During fixed orthodontic therapy, arch-wires, brackets, and elastic modules have been shown to be sites of significant plaque accumulation, making it difficult for a patient to maintain proper oral hygiene. The problem most dentists face is that they cannot visualize this biofilm completely to be able to carry out efficient plaque removal. Visual assessment is, to date, the most common method for plaque visualization, and various indexes have been demonstrated to be sufficient for quantification of the amount of plaque present. However, the problem is that visual assessments are inconsistent, operator dependent and often subjective, which can lead to inconsistency in results. Fluorescence is one such method that can be explored for its use in effective plaque identification and removal. Literature has it that dentists and patients find it particularly useful for monitoring oral hygiene status during treatment. Fluorescence has the capability of offering clinical orthodontists and researchers a new method of detection of demineralization during orthodontic treatment, furthermore, for efficient removal of orthodontic adhesive cements, fluorescent light may be used in conjunction with high-speed burs to deliver fast, less time consuming, and safer results. The benefit of direct visual treatment using fluorescence enhanced theragnosis is that the patient receives controlled and guided therapy. It has multiple benefits, such as early diagnosis of caries, biofilm identification, and even helps to achieve improved treatment outcomes by better resin selection for esthetic procedures.

Highlights

  • Dental plaque is formed by a variety of bacteria that form an adhesive layer on the tooth surface

  • These bacteria can accumulate rapidly and form colonies that lead to the development of a biofilm that collects in the interdental spaces and gingival margins [1,2]

  • If this dental biofilm is removed in time, gingival health can be restored without any soft or hard tissue damage [5]

Read more

Summary

Introduction

Dental plaque is formed by a variety of bacteria that form an adhesive layer on the tooth surface. These bacteria can accumulate rapidly and form colonies that lead to the development of a biofilm that collects in the interdental spaces and gingival margins [1,2]. They rely on the patients to maintain good oral hygiene during the treatment duration and can only carry out prophylaxis using disclosing solutions when they visit for a follow-up appointment [9].

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.