Abstract

Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.

Highlights

  • Livestock production is one of the fastest growing aspects of the agricultural sector

  • Feed supplementation with various species of Lactobacillus including Lb. johnsonii, Lb. mucosae, and Lb. plantarum improved the gut microbial profile and microbial metabolites production, leading to gut health improvement, and reduced pathogens colonization of intestinal mucosa (Dowarah et al, 2017). These investigators showed that weaned piglets treated with 2 × 109 CFU/g of Ped. acidilactici FT28 rather than Lb. acidophilus NCDC-15 resulted in the reduction of diarrhea due to dietary and environmental changes (Dowarah et al, 2018)

  • Another study carried out on pigs fed with Lb. plantarum ATCC 4336, Lb. fermentum DSM 20016, and Ent. faecium ATCC 19434 at concentrations of 1011 CFU/kg resulted in a weight gain due to the ability of these strains, mainly Lb. ones, to produce enzymes enhancing feed digestion, besides lactic acid production (Veizaj-Delia et al, 2010)

Read more

Summary

INTRODUCTION

Livestock production is one of the fastest growing aspects of the agricultural sector. Feed supplementation with various species of Lactobacillus including Lb. johnsonii, Lb. mucosae, and Lb. plantarum improved the gut microbial profile and microbial metabolites production, leading to gut health improvement, and reduced pathogens colonization of intestinal mucosa (Dowarah et al, 2017) These investigators showed that weaned piglets treated with 2 × 109 CFU/g of Ped. acidilactici FT28 rather than Lb. acidophilus NCDC-15 resulted in the reduction of diarrhea due to dietary and environmental changes (Dowarah et al, 2018). Another study carried out on pigs fed with Lb. plantarum ATCC 4336, Lb. fermentum DSM 20016, and Ent. faecium ATCC 19434 at concentrations of 1011 CFU/kg resulted in a weight gain due to the ability of these strains, mainly Lb. ones, to produce enzymes enhancing feed digestion, besides lactic acid production (Veizaj-Delia et al, 2010). This recombinant dendritic cell-targeting peptide can be used synergistically to enhance vaccine humoral immune responses and to reduce viral replication in chicken lungs (Shi et al, 2016)

ETHICS STATEMENT
Findings
CONCLUSION AND FUTURE DESIGN
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.