Abstract

In order to decrease the incidence of flap necrosis after reconstructive surgeries, new approaches are required. In the present study, a model of venous congested flaps in rats was established to test the heat shock protein (HSP) 90α, ‘F-5’, protein as an intervention therapy to alleviate ischemia-reperfusion injury. A recombinant plasmid pET15b-F-5 carrying the HSP90α gene was constructed and the induced protein was purified from bacterial cell cultures. The rats in the study were divided into three different intervention groups: group A rats were treated with normal saline prior to flap establishment, group B rats were treated with HSP90α, ‘F-5’, protein prior to flap establishment, and group C rats were treated with the same ‘F-5’ protein after the surgical procedure. Additionally, the reperfusion time-points, ischemia for 6 or 8 h (5 rats each), were established in each group. After set periods of time, the flaps were observed for skin appearance, blood flow, survival rate and histological changes including neovascularization and re-epithelialization. The results showed that the flaps in the rats pre-treated with ‘F-5’ protein performed better than the flaps of rats in the other two groups: the blood flow was higher, flap survival rate was increased, inflammatory cell infiltration was decreased and angiogenesis increased, and new skin structure was better completed by the end of the experiment. The parameters examind were improved for all the groups when the ischemia time was 6 h instead of 8 h. In conclusion, HSP90α intervention prior to flap establishment was shown to be beneficial in the model of ischemia-reperfusion injury in venous-congested flaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call