Abstract
Background:L-arginine has been recently investigated and proposed to reduce neurological damage after various experimental models of neuronal cellular damage. In this study, we aim to evaluate the beneficial effects of L-arginine administration on the numerical density of dark neurons (DNs) in the substantia nigra pars compacta (SNc) of Balb/c mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration.Materials and Methods:Male Balb/c mice were randomly divided into 4 groups (n = 7 each): MPTP only; saline only (control); MPTP + L-arginine; and L-arginine only. The animals were infused intranasally with a single intranasal administration of the proneurotoxin MPTP (1 mg/nostril). L-arginine (300 mg/kg) was administrated intraperitoneally once daily for 1-week starting from 3 days after MPTP administration. Cavalieri principle method was used to estimate the numerical density of DNs in the SNc of different studied groups.Results:Twenty days following MPTP administration, the number of DNs was significantly increased when compared to sham-control and L-arginine-control groups (P < 0.05). Nevertheless, our results showed that L-arginine administration significantly decreased the numerical density of DNs in SNc of mice.Conclusion:This investigation provides new insights in experimental models of Parkinson’s disease, indicating that L-arginine represents a potential treatment agent for dopaminergic neuron degeneration in SNc observed in Parkinson’s disease patients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have