Abstract

The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu(2)(CN)(2)Br].H(2)O (I), K(3)[Cu(6)(CN)(6)I(3)].2H(2)O (II), Cs[Cu(3)(CN)(3)Cl] (III), Cs[Cu(3)(CN)(3)Br] (IV), and Cs(2)[Cu(4)(CN)(4)I(2)].H(2)O (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu(3)(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(6)], a known phase, and [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(4)I(2)] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu(II)(OH(2))(4)][Cu(I)(2)(CN)I(2)](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call