Abstract

This paper proposes a NSTS (new steel tube slab) structure by connecting the longitudinal steel tubes with small steel tubes in transverse, in order to decrease the construction difficulty and improve the bearing capacity of existing NTR (new tubular roof) or STS (steel tube slab) structures. Experimental study on the bending performance and influences of following parameters are carried out: the connection type of the steel tube, the diameter and eccentricity of the small steel tube, and the thickness of the bottom steel plate. The results show that the NSTS members present progressive ductile flexural failure under concentrated load. The connection type has important effect on the mechanical behavior, and the bolts fixed T-shaped plate (B+T) connection method, which provides much higher bending stiffness, is proved to be the most reliable connection type. The increase of small steel tube diameter enhances the bending performance as expected, which also confirms the effectiveness of the B+T connection, while the tube eccentricity presents little impact on the bearing capacity. The bottom steel plate significantly improves the bearing capacity and stiffness and reduces the mid-span deflection. Furthermore, the bending capacity calculation method is proposed and the calculated values show good agreement with the test results. Also, the effect rules of the diameter-thickness ratio of the small tube, the length-diameter ratio of the member and the thickness variety of the bottom steel plate on the bending capacity of NSTS members are further investigated based on the proposed theoretical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call