Abstract

Today, the development of the general theory of quasi-static deformation of three-layer structural elements, including plates, is not yet complete and is being intensively studied. Mathematical models of deformation under complex thermo-force and thermo-irradiation loads are created. The problems of strength, stability, and dynamic behaviour are considered. In strength calculations of three-layer structural elements, it is necessary to take kinematic hypotheses for each layer separately, which complicates the mathematical side of the problem but leads to significant refinement of the stress-strain state. The reaction of an elastic foundation is described by the Winkler model. The use of variational methods allows one to obtain a refined system of three differential equations of equilibrium in internal forces. The thermo-force bending of an elastoplastic circular sandwich plate with a light core connected to an elastic foundation is considered. The polyline normal hypotheses are used to describe the kinematics of a plate package that is not symmetric in thickness. In thin base layers, the Kirchhoff-Love hypotheses are accepted. In a light relatively thick core, the Timoshenko hypothesis is true, while the normal remains rectilinear, but rotates at some additional angle, the radial displacements change linearly in thickness. The differential equations of equilibrium are obtained using the Lagrange variation method. The statement of the boundary value problem in displacements is given in a cylindrical coordinate system. Numerical results for circular metal-polymer sandwich plates are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.