Abstract

Bending and vibration characteristics of FG porous sandwich beam with viscoelastic boundary conditions are investigated. Complex shear modulus and associated loss factor are considered for the viscoelastic interlayer. The beam is constrained by viscoelastic supports (VES) at either end. Complex stiffness model is adopted for VES. The transverse deflection, natural frequency, loss factors, and mode shapes are obtained by varying VES stiffness. Furthermore, the study is extended to sandwich beams with various (H, O, V, and X) porosity patterns. The results convey that VES contribution in vibration damping is more predominant when the supports are less stiff (more viscous).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call