Abstract

AbstractWe study the spontaneous out-of-plane bending of a planar untwisted ribbon composed of nematic polymer networks activated by a change in temperature. Our theory accounts for both stretching and bending energies, which compete to establish equilibrium. We show that when equilibrium is attained these energy components obey acomplementarityrelation: one is maximum where the other is minimum. Moreover, we identify ableachingregime: for sufficiently large values of an activation parameter (which measures the mismatch between the degrees of order in polymer organization in the reference and current configurations), the ribbon’s deformation is essentially independent of its thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.