Abstract

We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification step in each iteration to selectively generate cuts that are more likely to be valuable cuts. The LearnBD algorithm includes two phases: (i) sampling cuts and collecting information from training problems and (ii) solving testing problems with a support vector machine (SVM) cut classifier. We run the LearnBD algorithm on instances of capacitated facility location and multicommodity network design under uncertain demand. Our results show that SVM cut classifier works effectively for identifying valuable cuts, and the LearnBD algorithm reduces the total solving time of all instances for different problems with various sizes and complexities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.