Abstract
The presented work focuses on preparing transparent bendable films from nanocellulose. In comparison to cellulose nanofibrils and bacterial cellulose, nanocrystalline cellulose are shorter and have higher crystallinity (CI<95 %). Sulfated CNC (CNCIH-OSO3H) were prepared, and by changing their counter ions from H+ to Na+ and Et4N+ (Tetraethyl ammonium) flexible films were prepared with a strength of 70.5 MPa and 2.6 % elongation at break. The CNC suspensions showed excellent dispersibility in DI water with Zeta-potential (ζ) values > -35 mV. In the preparation of films, pre-sonication was key in improving the tensile strength and improved elongation (>30 % increase compared to films prepared without sonication) and hydrophobicity. The change of counter ion, H+ to Na+ or Et4N+, improved the thermal and mechanical properties of CNC films. The films were investigated with UV–Vis spectroscopy and optical polarized spectroscopy to explain the arrangement of nanocellulose crystals in correlation with the mechanical properties. The wettability of CNC samples was also studied and explained in detail. CNC from CelluForce was also studied as commercial reference samples. The modified CNC films have adequate properties for application in flexible electronics, energy storage, and biodegradable smart packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Carbohydrate Polymer Technologies and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.