Abstract
In this paper, we address a two-echelon humanitarian logistics network design problem involving multiple central warehouses (CWs) and local distribution centers (LDCs) and develop a novel two-stage scenario-based possibilistic-stochastic programming (SBPSP) approach. The research is motivated by the urgent need for designing a relief network in Tehran in preparation for potential earthquakes to cope with the main logistical problems in pre- and post-disaster phases. During the first stage, the locations for CWs and LDCs are determined along with the prepositioned inventory levels for the relief supplies. In this stage, inherent uncertainties in both supply and demand data as well as the availability level of the transportation network's routes after an earthquake are taken into account. In the second stage, a relief distribution plan is developed based on various disaster scenarios aiming to minimize: total distribution time, the maximum weighted distribution time for the critical items, total cost of unused inventories and weighted shortage cost of unmet demands. A tailored differential evolution (DE) algorithm is developed to find good enough feasible solutions within a reasonable CPU time. Computational results using real data reveal promising performance of the proposed SBPSP model in comparison with the existing relief network in Tehran. The paper contributes to the literature on optimization based design of relief networks under mixed possibilistic-stochastic uncertainty and supports informed decision making by local authorities in increasing resilience of urban areas to natural disasters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.