Abstract

Locating distribution centers optimally is a crucial and systematic task for decision-makers. Optimally located distribution centers can significantly improve the logistics system’s efficiency and reduce its operational costs. However, it is not an easy task to optimize distribution center locations and previous studies focused primarily on location optimization of a single distribution center. With growing logistics demands, multiple distribution centers become necessary to meet customers’ requirements, but few studies have tackled the multiple distribution center locations (MDCLs) problem. This paper presents a comprehensive algorithm to address the MDCLs problem. Fuzzy integration and clustering approach using the improved axiomatic fuzzy set (AFS) theory is developed for location clustering based on multiple hierarchical evaluation criteria. Then, technique for order preference by similarity to ideal solution (TOPSIS) is applied for evaluating and selecting the best candidate for each cluster. Sensitivity analysis is also conducted to assess the influence of each criterion in the location planning decision procedure. Results from a case study in Guiyang, China, reveals that the proposed approach developed in this study outperforms other similar algorithms for MDCLs selection. This new method may easily be extended to address location planning of other types of facilities, including hospitals, fire stations and schools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.