Abstract

Abstract Objective performance metrics that measure precipitation variability across time scales from subdaily to interannual are presented and applied to Historical simulations of Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. Three satellite-based precipitation estimates (IMERG, TRMM, and CMORPH) are used as reference data. We apply two independent methods to estimate temporal variability of precipitation and compare the consistency in their results. The first method is derived from power spectra analysis of 3-hourly precipitation, measuring forced variability by solar insolation (diurnal and annual cycles) and internal variability at different time scales (subdaily, synoptic, subseasonal, seasonal, and interannual). The second method is based on time averaging and facilitates estimating the seasonality of subdaily variability. Supporting the robustness of our metric, we find a near equivalence between the results obtained from the two methods when examining simulated-to-observed ratios over large domains (global, tropics, extratropics, land, or ocean). Additionally, we demonstrate that our model evaluation is not very sensitive to the discrepancies between observations. Our results reveal that CMIP5 and CMIP6 models in general overestimate the forced variability while they underestimate the internal variability, especially in the tropical ocean and higher-frequency variability. The underestimation of subdaily variability is consistent across different seasons. The internal variability is overall improved in CMIP6, but remains underestimated, and there is little evidence of improvement in forced variability. Increased horizontal resolution results in some improvement of internal variability at subdaily and synoptic time scales, but not at longer time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.