Abstract
To better support the design of peptide-based vaccines, refinement of methods to predict B-cell epitopes necessitates meaningful benchmarking against empirical data on the cross-reactivity of polyclonal antipeptide antibodies with proteins, such that the positive data reflect functionally relevant cross-reactivity (which is consistent with antibody-mediated change in protein function) and the negative data reflect genuine absence of cross-reactivity (rather than apparent absence of cross-reactivity due to artifactual masking of B-cell epitopes in immunoassays). These data are heterogeneous in view of multiple factors that complicate B-cell epitope prediction, notably physicochemical factors that define key structural differences between immunizing peptides and their cognate proteins (e.g., unmatched electrical charges along the peptide-protein sequence alignments). If the data are partitioned with respect to these factors, iterative parallel benchmarking against the resulting subsets of data provides a basis for systematically identifying and addressing the limitations of methods for B-cell epitope prediction as applied to vaccine design.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have