Abstract

Fire resistance testing of components made of carbon fibre reinforced polymers (CFRP) usually demands intermediate-scale or full-scale testing. A bench-scale test is presented as a practicable and efficient method to assess how different fire protective systems improve the structural integrity of CFRPs during fire. The direct flame of a fully developed fire was applied to one side of the CFRP specimen, which was simultaneously loaded with compressive force. Three different approaches (film, non-woven, and coatings) were applied: paper with a thickness in the range of μm consisting of cellulose nanofibre (CNF)/clay nanocomposite, nonwoven mats with thickness in the range of cm and intumescent coatings with a thickness in the range of mm. The uncoated specimen failed after just 17 s. Protection by these systems provides fire stability, as they multiply the time to failure by as much as up to 43 times. The reduced heating rates of the protected specimens demonstrate the reduced heat penetration, indicating the coatings’ excellent heat shielding properties. Bench-scale fire stability testing is shown to be suitable tool to identify, compare and assess different approaches to fire protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.