Abstract
In current practice, the similarities between two or more univariate time series of stocks are determined by using the Pearson correlation coefficient (PCC). However, the economic information might be misleading if the analysis applies only the univariate time series of stock price, as each stock is denoted by four types of prices. Therefore, multidimensional of stocks are taken into account in this paper. The similarities between two or more multi-dimensional of stocks are quantified by using Random Vector (RV) coefficient. Additionally, an algorithm is proposed due to the computational of RV coefficient is tedious and time-consuming when a large number of stocks are included. In this paper, the Malaysian stock network analysis in univariate and multivariate setting are conducted and analysed by using the PCC, RV coefficient, forest of all possible MSTs and centrality measures. In summary, there is some important economic information could not be brought out by univariate network analysis alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.