Abstract
The ubiquity of environmental pollution by endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) is progressively considered as a major threat to aquatic ecosystems worldwide. Numerous toxicological studies have proved that BPA are hazardous to aquatic environment, along with alterations in the development and physiology of aquatic vertebrates. However, generally, there is a paucity in knowledge of behavioural and physiological effects of BPA with low concentration, for example, 0.22 nM (50 ng/L) and 2.2 nM (500 ng/L). Here we show that treatment of adult male zebrafish (Danio rerio) with 7 weeks low-dose (0.22 nM–2.2 nM) BPA, resulted in alteration in histological structure of testis tissue and abnormality in expression levels of genes involved in testicular steroidogenesis. Furthermore, low-dose BPA treatment decreased the male locomotion during courtship; and was associated with less courtship behaviours to female but more aggressive behaviours to mating competitor. Interestingly, during the courtship test, we observed that female preferred control male to male under low-dose BPA exposure. Subsequently, we found that the ability of female to chose optimal mating male through socially mutual interaction and dynamics of male zebrafish, which was based on visual discrimination. In sum, our results shed light on the potential behavioural and physiological effect of low-dose BPA exposure on courtship behaviours of zebrafish, which could exert profound consequences on natural zebrafish populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.