Abstract
Introduction: The common mechanism of tinnitus, hyperacusis, and loudness perception is hypothesized to be related to central gain. Although central gain increases with attempts to compensate hearing loss, reduced input can also be observed in those with clinically normal hearing. This study aimed to evaluate the loudness growth function of tinnitus patients with and without hyperacusis using behavioural and electrophysiological methods. Methods: The study consists of three groups with a total of 60 clinically normal hearing subjects, including the control group (10 men and 10 women; mean age 39.8, SD 11.8 years), tinnitus group (10 men and 10 women; mean age 40.9, SD 12.2 years), and hyperacusis group (also have tinnitus) (7 men and 13 women; mean age 38.7, SD 14.6 years). Loudness discomfort levels (LDLs), categorical loudness scaling (CLS), and cortical auditory evoked potentials were used for the evaluation of loudness growth. N1-P2 component amplitudes and latencies were measured. Results: LDL results of 500, 1,000, 2,000, 4,000, and 8,000 Hz showed a significant difference between the hyperacusis group and the other two groups (p < 0.001). In the loudness scale test performed with 500 Hz and 2,000 Hz narrow-band noise (NBN) stimulus, a significant difference was observed between the hyperacusis group and the other two groups in the “medium,” “loud,” and “very loud” categories (p < 0.001). In the cortical examination performed with 500 Hz and 2,000 Hz NBN stimulus at 40, 60, and 80 dB nHL intensities, no significant difference was observed between the groups in the N1, P2 latency, and N1-P2 peak-to-peak amplitude. Conclusion: Although the hyperacusis group is significantly different between groups in behavioural tests, the same cannot be said for electrophysiological tests. In our attempt to differentiate tinnitus and hyperacusis with electrophysiological tests over the loudness growth function, N1 and P2 responses were not seen as suitable methods. However, it appears to be beneficial to use CLS in addition to LDLs in behavioural tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.