Abstract
The neuropeptide orexin-A (OX-A) has diverse functions, including maintaining arousal, autonomic control, motor activity and stress responses. These functions are regulated at different terminal regions where OX-A is released. The current study examined the physiological and behavioural effects of OX-A microinjections into the central amygdala (CeA) under basal and stressed conditions in rats. When OX-A was microinjected into the CeA and the animals returned to the home-cage, heart rate and mean arterial pressure were increased compared to vehicle-injected controls. General activity of the animal was also increased, indicating that OX-A activity in CeA contributes to increased arousal. This outcome is similar to the effects of central intracerebroventricular infusions of OX-A, as well as the cardiovascular effects previously demonstrated at many of OX’s efferent hypothalamic and brainstem structures. In a second study, animals were fear-conditioned to a context by delivery of electric footshocks and then animals were re-exposed to the conditioned context at test. When OX-A was microinjected at test, freezing behaviour was reduced and there was a corresponding increase in the animal’s activity but no impact on the pressor and cardiac responses (i.e, blood pressure and heart rate were unchanged). This reduction in freezing suggests that OX-A activates amygdala neurons that inhibit freezing, which is similar to the actions of other neuropeptides in the CeA that modulate the appropriate defence response to fearful stimuli. Overall, these data indicate that the CeA is an important site of OX-A modulation of cardiovascular and motor activity, as well as conditioned freezing responses.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have