Abstract

This work deals with the interaction between liquid lead and the ferritic-martensitic steel, T91. Mechanical properties of specimens loaded in contact with liquid lead were tested in laboratory and boundary conditions necessary to ascertain the sensitivity to Liquid Metal Embrittlement (LME) were studied. Three effects, temperature, deformation rate and surface treatment were selected to stimulate the LME initiation on smooth tensile specimens, then the notch effect was selected as an additional factor. Some specimens were pre-treated by application of a flux followed by dipping into liquid lead to simulate wetting. Slow strain rate tests (SSRT) of specimens immersed in liquid lead were performed applying strain rates from 10−2 to 10−8 1/s from 350° to 450 °C in test cell CALLISTO. Two types of tensile specimens were tested, smooth and notched. After tests, the fracture mode and the status of specimen surface was examined. Results of the specimens immersed in lead were compared with the results obtained in air. The most significant was the strain rate effect on the stress-strain curves of smooth specimens. Moreover, while no LME was observed for the smooth specimens, clear evidence of LME was observed for the notched specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.