Abstract

Rock joints will undergo a sequence of cyclic shearing loadings during a seismic event. However, the effect of cyclic shear loading on the energy-absorbing rock bolts has never been studied before. Laboratory shear experiments were carried out to study the shear behaviour of rock joints reinforced by the energy-absorbing rock bolts under cyclic loading condition. The results illustrated that the support effect of the energy-absorbing rock bolts was very small after the first cycles in the cyclic shear experiments. In the case of small cyclic distances, the shear resistance of the energy-absorbing rock bolts will gradually recover after the shear displacement has exceeded the cyclic distance in the subsequent shear experiment after 5 cycles. In the case of large cyclic distances, no recovery of shear resistance was found in the subsequent shear experiment, indicating that the energy-absorbing rock bolts had completely lost its supporting role after cyclic shear loading. A new index of shear energy loss ratio (SELR) was proposed to evaluate the shear behaviour of energy-absorbing rock bolt and rock joint under cyclic shear loading condition. The results showed that the SELR of rock joints was commonly less than 20%. However, the SELR of rock bolts could reach nearly 100% when the cyclic distance was larger than 8 mm. When the cyclic distance was 4 mm or 6 mm, the SELR of the fully encapsulated rock bolts almost reached 100%. However, the SELR of the energy-absorbing rock bolts were located in the range of 50–80% for the same condition. The results indicated that the shear behaviour of a rock bolt inserted in a rock joint was strongly influenced by cyclic shear loading. The shear performance of the energy-absorbing rock bolts was better than the fully encapsulated rock bolts under cyclic shear loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call