Abstract
Abstract Effect of the presence of perforations on thin structure has been extensively investigated for decades. Various perforation parameters were investigated in past studies. However, study on thin cylinder with multiple perforations has not been carried out. In searching for lighter structural members, the concept of perforated hollow section has been inspired by the shape and arrangement of multiple perforations observed in the Cholla skeleton. Effects of multiple perforation parameters on circular hollow section have been the main interest. This paper presents the verification of FEM simulation with test results. A non-perforated circular hollow section (control model) and a circular hollow section penetrated with 12 nos. of circular shape perforations in array arrangement were selected for the verification process. Both test specimen and FEA models were subjected to compression, flexural and torsional loads. For result comparison within the material linear range, FEA models show good agreement with test results for compression and flexural load cases, and for control models under torsional load case. For perforated models under torsional load, FEA results correspond well with the inclined strain gauge readings. FEM analysis method is considered capable to produce reliable result for loading within the material linear range for circular hollow sections with multiple perforations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have