Abstract
The orbital evolution of planetary systems similar to our Solar one represents one of the most important problems of Celestial Mechanics. In the present work we use Jacobian coordinates, introduce two systems of osculating elements, construct the Hamiltonian expansions in Poisson series for all the elements for the planetary three-body problem (including the problem Sun–Jupiter–Saturn). Further we construct the averaged Hamiltonian by the Hori–Deprit method with accuracy up to second order with respect to the small parameter, the generating function, the change of variables formulae, and the right-hand sides of the averaged equations. The averaged equations for the Sun–Jupiter–Saturn system are integrated numerically over a time span of 10 Gyr. The Liapunov Time turns out to be 14 Myr (Jupiter) and 10 Myr (Saturn).To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.