Abstract
The western Irish Sea seasonal gyre is widely believed to play an important role in the local retention of resident larvae. This mechanism could be particularly crucial for the larvae of the heavily fished crustacean Nephrops norvegicus (L.), as their sediment requirements highly restrict where they are able to settle. As recent research suggests that the gyre may be becoming less retentive due to changes in atmospheric forcing, it is now crucial to understand how the gyre influences dispersal. This investigation addresses the hypothesis that shelf sea gyres reinforce larval retention using a biophysical model with vertical migration, habitat selection and temperature-dependent pelagic larval duration (PLD) configured to match the behaviour of N. norvegicus larvae. The results of this study suggest that the gyre does increase the likelihood that passive larvae remain within the western Irish Sea, on the condition that the larvae remain fixed at the depth of peak gyral flow. Retention rates are significantly lower when vertical migration is introduced, and there is no evidence that the gyre promotes larval retention amongst either vertically migrating larvae, or larvae that require muddy sediments for successful settlement. By contrast, vertical migration is shown to be favourable for retention in the eastern Irish Sea. PLD varies by a factor of two according to release date and location. The simulations suggest that whilst some highly limited and almost entirely unidirectional larval exchange may occur, the distinct sites largely rely upon local recruitment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.