Abstract
Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs)with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.