Abstract

The emergence of advanced non-uniform Compressive Sensing (CS) signal processing techniques and spin-based devices has led to the development of novel Analog to Digital Converter (ADC) architectures. Herein, a novel interactive simulation framework is developed to provide widespread access to the ADC architecture designed using commercially-available 2terminal Magnetic Tunneling Junction (MTJ) devices. The proposed ADC simulation framework utilizes CS techniques to provide insights for educational and technical purposes. The proposed framework provides simulation results spanning from the energy consumption required by each sample and MTJ device to the switching behavior of each MTJ device. Additionally, the results demonstrate the type of signal used along with the bias voltage required to switch each MTJ device. However, currently, 2-terminal MTJ devices and advanced signal processing techniques are not part of the Electrical and Computer Engineering undergraduate curriculum. To mitigate this challenge, the proposed framework has an educational resource site companion to distribute the interactive tool and further provide insights into the modeled Spin-based ADC by showcasing the research it was based on. Finally, the educational resources site also includes video tutorials to further engage the students and teach undergraduates the fundamental behavior of MTJ devices and utilization of the interactive simulation framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call