Abstract
Behavioral influences shape processing in the retina and the dorsal lateral geniculate nucleus (dLGN), although their precise effects on visual tuning remain debated. Using 2-photon functional Ca2+ imaging, we characterize the dynamics of dLGN axon activity in the primary visual cortex of awake behaving mice, examining the effects of visual stimulation, pupil size, stillness, locomotion, and anesthesia. In awake recordings, nasal visual motion triggers pupil dilation and, occasionally, locomotion, increasing responsiveness and leading to an overrepresentation of boutons tuned to nasal motion. These effects are pronounced during quiet wakefulness, weaker during locomotion, and absent under anesthesia. Accounting for dynamic changes in responsiveness reduces tuning biases, revealing an overall preservation of retinal representations of visual motion in the visual thalamocortical pathway. Thus, stimulus-driven behavioral modulations can alter tuning and bias classification of early visual neurons, underscoring the importance of considering such influences in sensory processing experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have